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The Sachs theorem [ 1] is discussed, and Kekul6 and Sachs graphs are defined. The simple conse- 
quences of Sachs theorem which are of interest in chemistry are presented. Thus, it is shown that the 
pairing theorem, Hiickel (4m + 2) rule, and Longuet-Higgins and Dewar rule [2] can be obtained 
easily with the use of Sachs theorem. The dependence of the number of Kekul6 structures on the 
molecular topology is also shown. 

Das Theorem von Sachs [1] wird diskutiert und Kekul6- und Sachs-Graphen werden definiert. 
Die einfachen Folgerungen aus dem Theorem von Sachs, die in der Chemie von Interesse sind, werden 
abgeleitet. So wird gezeigt, dab die Paarregel von Coulson und Rushbrooke, die Hiickelsche (4m + 2)- 
Regel und die Regel von Longuet-Higgins und Dewar [2] leicht mit dem Sachsschen Theorem erhalten 
werden k6nnen. Die Abh~ingigkeit der Zahl der Kekul6-Strukturen vonder molekularen Topologie 
wird ebenfalls gezeigt. 

Introduction 

In this work our intention is to investigate the applicability of the mathematical 
apparatus of Graph theory (GT) to the simple molecular orbital theory. Without 
insisting on rigid mathematical formalism (which can be found elsewhere [3-5]), 
we define a graph as an ordered pair 

(aft, ~r (1) 

where  j l r  is a set of  s o m e  e l emen t s  ("nodes")  a n d  d is a r e l a t i on  def ined o n  the  
set X ,  wh ich  is s y m m e t r i c a l  a n d  antiref lexive,  i.e.: 

(X, Y) e ~r =~ (Y, X) ~ d ,  (2a) 

(X, Y) E ~ r  Y. (2b) 

So, two nodes can either belong to the relation ~r (than we say that this nodes 
are adjacent), or not (then this nodes are not adjacent). A usual sketch representa- 
tion of a graph is obtained when the nodes (elements of the set X )  are drawn as 
small circles and if two nodes belong to the relation ~r they are connected by a line 
(so called "edge"). Tile analogy between the nodes and edges of a graph and the 
atoms and bonds in a structural formula of a molecule is obvious. 
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For example, the graph G which is a representation of the structural formula 
of methane has five nodes. The relation ~ '  is then the following set of pairs: 

{(1, 5), (5, 1), (2, 5), (5, 2), (3, 5), (5, 3), (4, 5), (5, 4)}. 

If some edges of a graph are removed a subgraph of the graph is obtained. 
If some nodes together with all adjacent edges are removed a partial graph is 
obtained. A subgraph of a partial graph is called a partial subgraph of the graph. 
G' is a subgraph, G" is a partial graph and G" is a partial subgraph of the graph G. 

The graph with two nodes and one edge: 

o o 

will be denoted as F. 
Using GT, different combinatorial problems of the Organic chemistry can be 

solved: The number of structural isomers [6], the number of conformations [7], 
the number of Kekul6 structures [8-1. However, using a graph theory representa- 
tion of a molecule, all geometric properties (bond lengths, angles) are neglected. 
The only molecular property considered is the existence or non-existence, respec- 
tively, of the chemical bond between two atoms. This molecular property is 
usually called "topology" [9] and, although the expression is not the most precise 
one, it is in common use. 

Relation between the Graph Theory and Hiickel Theory 

There is some scepticism towards the attempts to obtain any useful conclusion 
about chemical and physical properties of compounds only from the knowledge 
of their topology [10]. However, in the last few years, various modifications of 
the H M O  method enabled to predict chemical behaviour of conjugated molecules 
as well as by using more complicated SCF calculations [11]. Similarly, the Htickel 
formalism using additional elements of GT was successfully applied to different 
classes of inorganic compounds [12]. 

The relation between GT and H M O  theory can be presented in the following 
manner. 

After a numeration of the nodes is performed, there is one to one correspon- 
dence between a graph and so called "adjacency matrix" A, defined as: 

10 if the nodes p and q are adjacent 
Apq = if they are not. 

(3) 

The Hamiltonian matrix in the Htickel approximation can be now written as: 

n = ~I +/~A (4) 

where I is a unit matrix; c~ and/~ are the Coulomb and the resonance integrals. 
When conjugated hydrocarbons are examined in the H M O  approach, the 

related graphs correspond to the carbon-carbon o--bond skeleton, while the 
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re-bonds and the C-H o--bonds are neglected: 

H H 
\ / 

G H 

H ~H 
O O O O 

In this work all graphs are assumed to be of the above type. 
The secular equation: 

detlH - ~S t = 0 (5) 

can be written, after adopting the zero-overlap approximation [13], as: 

where: det Ix! - A] = 0 (6) 

x - (V) 

In other words, the problem of the Hiickel orbital energies can be completely 
reduced to the adjacency matrix eigenvalue problem. Albeit this fact should have 
been known, at least implicitly, to everyone who once solved a Htickel problem, 
its fundamental meaning was discovered relatively recent [4, 5, 12c, 14]. 

Eq. (6) was exhaustively studied within GT [1, 15, t6]. Many useful results were 
obtained. Some of them we shall comment here. 

In the GT the following nomenclature is used. de t t x I -A l=_PG(x  ) is the 
"characteristic polynomial". The set of its roots: 

{Xl, x 2 , . . . ,  xNl 

~ e " being called the spectrum of the corresponding graph. 
So, let 

N 

Pc(x)= ~ a ,x  N-" (8) 
n = 0  

where N is the number of nodes in the graph. Since the characteristic polynomial 
Pc(x) is uniquely defined by the graph G, the coefficients a, can be found without 
going through the procedure of solving the determinant, but solely knowing the 
topological structure of the graph. 

If we define a Sachs graph as such graph which has no other components but 
graphs F and rings, a following formula, originally given by Sachs [1], determins 
those coefficients: 

a , =  ~ (-)c(s)U(s) for O < n < N  
sES. (9) 

ao=  1. 

Here s is a Sachs graph and S, is the set of all Sachs graphs with n nodes, c(s) and 
r(s) denote respectively the number of components and the number of ring com- 
ponents in s. The summation in (9) is over all elements of the set S,. If there is 
S, = I~, where 0 is an empty set, then a, = 0. We notice although that for odd n 
every s E S, must contain at least one ring with odd number of nodes. 
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Let us illustrate Eq. (9) by two examples: 

I 

$1 = 

0 

,:{(L)} 
s are drawn in small brackets. Now it can be seen that: 

and hence: 

a 1 = 0  
a2 = (_)120 + (_)120 + (_)120 + (_)120 = --4 

a3 =(--)121 = _ 2  

a4 =( - - )22~ = +1 

P G ( x )  = x 4 - 4 x  2 - 2 x  + 1 .  

The use of Eq. (9) often requires a same amount  of work as a direct solving 
of the determinant. But, some coefficients, which prove to be important for dif- 
ferent reasons (see discussion later on), can be obtained in a rather simple way: 

II 

S 8 = 

' % ,  ' o to  

as = ( - ) 2 2 1  + ( _ ) 4 2  o + ( _ ) 4 2  o = 4 .  

Application of Sachs Formula to Conjugated Hydrocarbons 

We will give now a survey of some simple consequences of Sachs formula 
which are of particular interest in chemistry. 

A) According to the definition of S. there is always: 

i.e. $1 = 0 ,  (10a) 
aa = 0 . (10b) 
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Since 
N 

al  = 2 x j  
j = l  

it follows that: 
N 
Y~ xj=0. (11) 

j = l  

The total re-electron energy of the molecule in the singlet ground state is: 

N/2 

E~=Zfl Z xj (12) 
j = l  

where xj are the roots given in decreasing order. 
B) It is simple to see that: 

- -  a 2 = number of edges. (13) 

As a consequence of the Eq. (11), the following relation holds: 

1 u 
--~1 2 (14) 

a 2 =  - - ~ -  J= x j  . 

This can be proved in a simple manner: 

1 ( ~  ~ ~ ) 
a2-- 2 x,~j=- ~,~J- 4 

i<j 2 -  i=1 j = l  j = l  

1 
- -  - -  2 x~ + xi L xj y~ x j ,  

2 i =  1 2-  2 i=1 j = l  j = l  

the first step being known from algebra. 
Eqs. (10), (11), (13) and (14) are already obtained by Gi,inthard and Primas [5] 

using the theorem of Collatz and Sinogowitz [15], which is equivalent to Sachs 
theorem. 

Since a2 can be obtained from the graph it would be very useful if some correla- 
tion between E~ and a2 could be established. Fortunately, such a correlation 
exists [17]. Almost in all cases when the number of edges is increased (the number 
of nodes being the same) the total re-electron energy increases too. In chemistry 
it corresponds to ring closure 1-18]. 

Example: 

-a z  7 8 9 10 
E~ 9.52 9.66 10.38 10.47 
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C) We will now consider the important class of alternant hydrocarbons. The 
graphs which correspond to these molecules have the property that their nodes 
can be painted with two colors in such a manner that two adjacent nodes always 
have different color. Hence, they are called "bichromatic graphs". It can be proved 
[3] that a graph is bichromatic if and only if it does not have any odd membered 
ring as its partial subgraph. Hence 

S. = 0 (15a) 
and 

a. = 0 (15b) 

for all odd n. So, the characteristic polynomial of the graph is of the form: 

P c ( x )  = x N + a 2 x N -  2 + a 4  x N - 4  + . . .  (16) 

and the spectre of the graph is symmetrically arranged with respect to x = 0. 
It is interesting to note that this fact (the pairing theorem) was first proved by 

Coulson and Rushbrooke [19] long before and independent of the GT [20]. 
D) The even alternant hydrocarbons 1, as a consequence of the pairing theorem, 

have triplet ground state if there is at least one zero in the spectre of the correspond- 
ing graph [2a]. In other words, such molecules are expected to be unstable within 
the framework of the H M O  theory. This important chemical implication of the 
H M O  theory has therefore a topological background. 

Since 
N 

aN = Xl x2"" xN =- I I  xj (17a) 
j = l  

and, hence, for alternant hydrocarbons 
N/2 

a N = ( - - )  N/2 l--[ Xj  (i7b) 
j = l  

it is sufficient to investigate if 

a N = O. (18) 

If Eq. (18) holds, there is at least one zero in the spectrum of P G ( x )  and, thus low 
chemical stability is to be expected. Further discussion about this problem will 
be reported in the subsequent publication [21]. 

a) One can show that Eq. (18) holds if there is no Kekul~ structure for the given 
hydrocarbon. 

First, if there is at least one Sachs graph s e SN corresponding to the given 
molecule, it implies the existence of Sachs graphs without rings (see below). 

The Sachs graphs without rings and with N nodes are in an obviously manner 
analogous to Kekul~ structures of the molecule. We will call them "Kekul6 
graphs", and denote by 

k l ,  k2,  . . . ,  k K �9 

The set of all K Kekul6 graphs will be denoted as Y .  It is clear that S c= SN. 

1 We restrict our considerations only to the case of even number of ~ centers and electrons. 
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Therefore, the nonexistence of Kekul6 graphs implicates the nonexistence 
of any Sachs graph with N nodes, and, hence, according to (9) there is 

SN=O. 

b) Conversely, if there exists only one Kekul6 structure (i.e. only one Kekul6 
graph and, hence, only one s e SN as, for example, in the case of noncyclic mole- 
cules), then 

aN = (_)N/2 (19) 

and, of course, there is no zero in the spectre. 

E) For rings (annulenes) the Hiickel (4m + 2)rule can be proved by considering: 

~ 

SN = ,I 

/ 0 0 

aN=(_)U/220+(_)N/Z20+(_)121=I  04 f~ N = 4 m  
- for N = 4 m + 2 .  

It means that only the (4m + 2)-annulenes have a singlet ground state (in HMO 
theory). 

Recently, Goldstein and Hoffmann [22] presented an other approach to 
Hiickel (4m + 2)rule. 

F) For polycyclic alternant hydrocarbons the rule of determining the value of 
a N (and thus molecular stability) is given by Longuet-Higgins and Dewar [2]. 
This rule is interesting because it express a relationship between MO and VB 
theory (see also Ref. [23]). 

Before the proof of this rule is given, we will point out an important special case. 
a) Let the graph G possess an edge _e such that by removing this edge the 

graph separates into two components G1 and G2, and let the number of nodes 
in these graphs: N, N1 and N2 be even. Than it is valid: 

aN(G ) = aN, ( G 0 au2 ( G2) . (20) 

This is the consequence of the fact that no Sachs graph with N nodes possess 
the edge _e. 

The meaning of Eq. (20) is that by joining of two stable molecules (by one bond) 
we always obtain a stable molecule, and if, at least, one of the joined molecules is 
unstable (but have even number of atoms) the resulting is unstable too. 
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Example: 

C 
stable 
(singlet ground state) 

unstable 
(triplet ground state) 

It is of special chemical importance that the introduction of vinyl-, phenyl- 
and similar groups at arbitrary positions of molecule cannot cause the essential 
stabilisation of unstable molecules and the destabilisation of stable molecules. 

b) Let the conjugated hydrocarbon have K Kekul6 structures. A definite 
permutation can be assigned to every Kekul6 structure (for details see [-2]). The 
formula derived by Longuet-Higgins and Dewar is: 

aN=(--)N/2 (i=~l pj) 2 (21) 

where 
{ +_ l if the permutation is even, (22) 

PJ = 1 if the permutation is odd. 

Specially, if the parity of all permutations is the same (it occurs to molecules 
without (4m)-membered rings), then it is: 

aN = (_)N/2 K 2 " (23) 

In order to derive Eq. (21) from the Sachs formula (9) we will define the "sum- 
mation" of two graphs with the same set of nodes as: 

( ~A/', ~'~1) (~ (iV', ~2 )  = ( X ,  ~ 1  k") ~2 )  �9 (24) 

It can bc easily seen that: 

G1 | G1 = G a ,  (25) 

G1 @ G2 = G2 @ G1 . (26) 

Then, the following theorem about the summation of Kekul6 graphs is valid: 

~# | x (  = SN (27) 

where o~ff �9 ~ is the set of all kA @ ks. 
First notice that every even membered ring (only such rings can occur in 

Sachs graphs of bichromatic graphs) can be obtained as: 

71 (~ 72 and 72 (~ ~1 
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where ~1 and ~2 are: the Kekul6 graphs of the ring. Naturally these are the only 
two possibilities for obtaining this ring by summation of Kekul6 garphs. Hence, 
for every Sachs graph s e SN there exist at least one pair of Kekul6 graphs ka, kB 
such that 

kA 0 kB = S. 

Thus 

Su __c ~y~ �9 s f .  (28) 

Let us suppose that the summation of k A and k 8 gives a graph a such that 
a r S N. For example, such a graph may be: 

O _ . . _ . . .  

O ' - - - "  "" 

The only way to obtain a from Kekul6 graphs is to sum: 

O• 0------  0 

and 

o o 

k~ 

0 

0 . . . .  

However, k A �9 kB gives not a but a': 

< 
' O . . . .  

If a ' r  Su, we can repeat our considerations again. 
It can be shown by a completely analogous argumentation that graphs: 

and 0 

cannot be obtained by summation of Kekul6 graphs. 
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The above mentioned three cases cover all possible non-Sachs graphs. So we 
have shown that it is always 

ka |  kB e SN, i.e. 

Q ~ _- SN (29) 

which completes the proof of Eq. (27). 
An important corollary of the theorem (27) is that if a Sachs graph s ~ SN con- 

tains r ring components, then there exist exactly 2 r different ordered pairs (k A, ks) 
with the property: 

k A @ k: B ---- S .  

Since the set W | S contains K 2 elements it is therefore valid: 

2 ~(s) = K 2 . (30) 
seSN 

This equation shows explicitly the dependence of the number of Kekul6 
structures on the molecular topology (see also Ref. [8]). 

For bichromatic graphs Sachs formula (9) can be written in the form: 

a N = ( - )  N/2 ~ ( - ) " ( ~ ) 2  "(s) (31) 
s~&v 

where r'(s) is the number of (4m)-membered rings in the Sachs graph s, because 
the generating of a (4m + 2)-membered ring from F graphs does not alter the 
parity of the number of components, while a (4m)-membered ring does. 

By comparison of Eqs. (30) and (31) it can be seen that 

K K 

aN=(_)u/2  y '  ~ (__),'(kA*kB), (32) 
A = I  B = I  

because kA G kB is an element of SN, and there are exactly 2 r pairs which give by 
summation the same Sachs graph. 

Now, it is not difficult to see that: 

( _ )r, (kA* k~) = PA PB (33) 

what leads straightforwardly to the Longuet-Higgins-Dewar formula (21). 
If the permutations of two Kekul6 structures have opposite parity, then the 

sum of the corresponding two Kekul6 graphs contains odd number of (4m)- 
membered rings. This enables us to estimate the parity of Longuet-Higgins- 
Dewar's permutations in a proper and simple manner. 

We will use as illustration the same two examples which were considered by 
Wilcox [2b]. 
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So, a 1 0 = ( - ) 5 ( 1 - 1 - 1 + 1 + 1 ) 2 = - 1 5 0 ,  and  singlet g round  state is to be 
expected. 
So, alo = (_ )5  (1 - 1 + 1 - 1) 2 = 0 and triplet g round  state, i.e. very low chemical  
stability or even nonexistence is to be expected. 
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